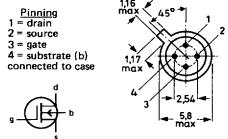
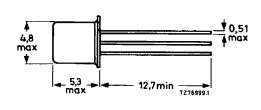
N-CHANNEL IG-MOS-FET

Symmetrical depletion type field-effect transistor in a TO-72 metal envelope with the substrate connected to the case. It is intended for chopper and other special switching applications, e.g. timing circuits, multiplex circuits, etc. The features are a very low drain-source 'on' resistance, a very high drain-source 'off' resistance and low feedback capacitances.


QUICK REFERENCE DATA


Drain-source resistance (on) at f = 1 kHz VDS = 0; VGS = 5 V; VBS = 0	R _{ds on}	max.	50 Ω
Drain-source resistance (off)			
$V_{DS} = 10 V; -V_{GS} = 5 V; V_{BS} = 0$	R _{DS off}	min.	10 GΩ
Feedback capacitance at f = 1 MHz			
$-V_{GS} = 5 V; V_{DS} = 0; I_B = 0$	C _{rs}	typ.	0.5 pF
$-V_{GD} = 5 \text{ V}; V_{SD} = 0; I_B = 0$	C _{rd}	typ.	0.5 pF

MECHANICAL DATA

Dimensions in mm

Accessories: 56246 (distance disc).

Note

To safeguard the gates against damage due to accumulation of static charge during transport or handling, the leads are encircled by a ring of conductive rubber which should be removed just after the transistor is soldered into the circuit.

December 1990

283

RATINGS

Limiting values in accordance with the Absolute Maximum Syste	em (IEC 134)			
Drain-substrate voltage	v_{DB}	max.	30	٧
Source-substrate voltage	v_{SB}	max.	30	V
Gate-substrate voltage (continuous)	v_{GB}	max. min.	10 -10	
Repetitive peak gate to all other terminals voltage VSB = VDB = 0; f > 100 Hz	v_{G-N}	max. min,	15 -15	
Non-repetitive peak gate to all other terminals voltage $V_{SB} = V_{DB} = 0$; t < 10 ms	v_{G-N}	max. min.	50 50	
Drain current (DC)	^I D	max.	25	mΑ
Drain current (peak value) $t_p = 20 \text{ ms}$; $\delta = 0.1$	IDM	max.	50	mΑ
Source current (peak value) $t_D = 20 \text{ ms}$; $\delta = 0.1$	^I SM	max.	50	mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	200	mW
Storage temperature range	T_{stg}	65 to	+ 125	°C
Junction temperature	T_{j}	max.	125	οС
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	500	K/W

284 December 1990

CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified

Drain cut-off currents; VBS = 0

$$V_{DS} = 10 \text{ V}; -V_{GS} = 5 \text{ V}$$

$$V_{DS} = 10 \text{ V}; -V_{GS} = 5 \text{ V}; T_j = 125 \text{ °C}$$

$$I_{DSX} < 1 \quad \mu A$$

Source cut-off currents; $V_{BD} = 0$

Gate currents; VBS = 0

Bulk currents; $V_{GB} = 0$

$$-V_{\rm BD} = 30 \ V; \ I_{\rm S} = 0$$
 $-I_{\rm BDO} < 10 \ \mu A$ $-V_{\rm BS} = 30 \ V; \ I_{\rm D} = 0$ $-I_{\rm BSO} < 10 \ \mu A$

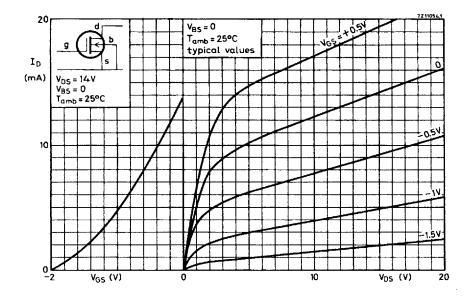
IGSS

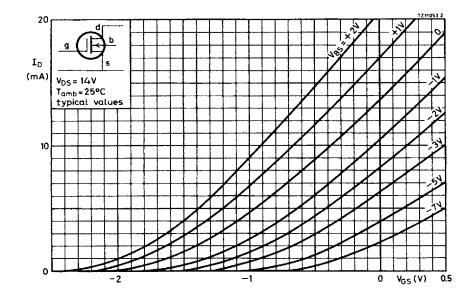
200

pΑ

Drain-source resistance (on) at f = 1 kHz; V_{RS} = 0

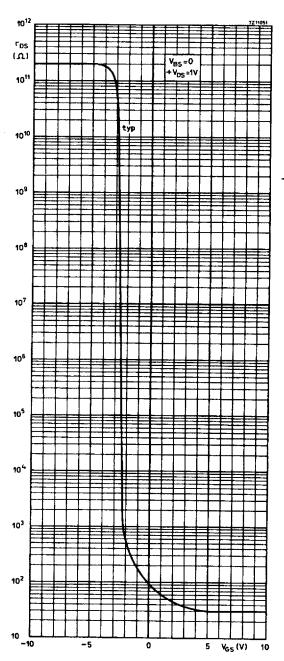
Drain-source resistance (off)

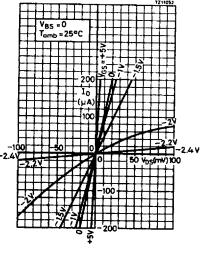

$$-V_{GS} = 5 \text{ V}; V_{DS} = 10 \text{ V}; V_{BS} = 0$$
 $R_{DS \text{ off}} > 10 \text{ G}\Omega$


Feedback capacitances at f = 1 MHz

$$-V_{GS} = 5 \text{ V}; V_{DS} = 0; I_B = 0$$
 C_{rs} typ. 0.5 pF $-V_{GD} = 5 \text{ V}; V_{SD} = 0; I_B = 0$ C_{rd} typ. 0.5 pF

Gate to all other terminals capacitance at f = 1 MHz


$$-V_{GB} = 5 \text{ V}; V_{SB} = V_{DB} = 0$$
 $C_{g-n} < 6 \text{ pF}$



286 March 1971

BSV81

March 1971

287